学习中心
载体指南

哺乳动物Cas9表达PiggyBac载体

概述

CRISPR/Cas9(规律成簇的间隔短回文重复序列及相关蛋白9)核酸酶表达载体属于几种新兴的基因组编辑工具之一(另外两种是ZFN和TALEN),可在基因组的靶位点快速有效地产生突变。这些质粒载体编码的特异性RNA,能够引导DNA核酸酶(或缺刻酶)编辑基因组中特定位点的DNA序列。

Cas9是RNA引导DNA核酸酶,是天然原核免疫系统的一部分,赋予细菌产生对质粒和噬菌体等外源遗传物质的抵抗能力。在细胞内,Cas9核酸酶与引导RNA(gRNA)形成复合物,该复合物通过与基因组中的18-22nt的同源靶序列直接相互作用,gRNA与靶位点通过互补配对使Cas9定位到靶序列上,然后切割基因组中的靶位点。

使用CRISPR打靶目的基因需要目标细胞同时表达Cas9和特异gRNA。这可以通过在同一个载体上共表达Cas9和gRNA,也可以通过在两个载体各上自表达Cas9和gRNA来实现。使用Cas9和gRNA两个载体分开表达的优势在于可使用不同的gRNA与不同的Cas9变体组合(如野生型Cas9,Cas9n,dCas9),从而根据实验目的带来更多变的实验方案。此外,使用单独的Cas9表达载体还可以构建稳转细胞株,获得比质粒瞬转更均一和高水平的Cas9蛋白表达。

我们的Cas9表达piggyBac载体是将Cas9基因永久导入一系列类型的哺乳细胞的有效而又简便的工具。基于PiggyBac转座子系统的转导方式可以利用质粒转染而非病毒转导的方法就能将Cas9表达框永久整合宿主基因组。PiggyBac系统包含两个载体,一个载体被称为辅助质粒,负责编码转座酶;另一个载体被称为转座子质粒,包含两个末端重复序列(ITR)以及两者之间的被转座区域,需要被转座到宿主基因组中的Cas9表达框就克隆在这个区域。

当辅助质粒和转座子质粒共转染靶细胞时,辅助质粒产生的转座酶将会识别转座子的两个ITR元件,然后将被转座区和两个ITR元件插入到宿主基因组中。PiggyBac属于II类转座子,通过“剪切—粘贴”的机制移动,从一个地方转座到另一个地方,而不留下序列本身(恰好相反,I类转座子是通过“复制—粘贴”的方式移动)。由于辅助质粒是通过瞬时转染进入宿主细胞的,故会逐渐丢失。随着辅助质粒的丢失,转座子在宿主基因组中变成了永久整合。当这些宿主细胞再次被辅助质粒转染,整合的转座子会再次通过“剪切—粘贴”的机制移动。

我们提供多种版本的来源于Streptococcus pyogenes的SpCas9。这其中包括hCas9,人源化的野生型SpCas9,能有效地在靶序列制造DNA双链断裂(DSB);hCas9-DA10,核酸酶突变型的人源hCas9,只对靶序列的DNA单链造成切口;dCas9,bao'hanD10A和H840A突变,属于无核酸酶活性的SpCas9;SpCas9-HF1,亲和性强化的SpCas9;以及eSpCas9,特异性强化的SpCas9。dCas9融合转录激活结构域如dCas9/VP64和dCas9/VPR,或者融合转录抑制结构域后,如dCas9/KRAB,可分别应用于CRISPRa和CRISPRi系统。此外,我们提供的来源于Staphylococcus aureus的SaCas9,其序列要比SpCas9和来源于Acidaminococcus的AsCpf1更短(AsCpf1属于新一代CRISPR基因编辑系统。AsCpf1造成DSB时,两条DNA链上的切口位置相互错开,形成粘性末端)。

关于该载体系统的更多信息,请参考以下文献。

参考文献 主题
Science. 339:819 (2013) Description of genome editing using the CRISPR/Cas9 system
Nat. Biotech. 31:827 Specificity of RNA-guided Cas9 nucleases
Nat. Commun. 9:1911 (2018) Review on various Cas9 variants
Genome Res. 24:1526 (2014) PiggBac vector based CRISPR/Cas9 editing
亮点

我们的Cas9表达piggyBac载体以及其辅助质粒经优化后在大肠杆菌体内具有很高的拷贝数,并且对大多数宿主细胞具有高效的转导能力。Cas9表达piggyBac载体可实现用户自定义启动子驱动下的高水平Cas9表达。当Cas9与靶点特异的gRNA结合后,可对靶位点进行高效的打靶。我们可提供多种类型的Cas9蛋白以满足不同的实验需求。

优势

外源基因的永久整合:常规质粒转染只能实现外源基因的瞬时表达,这种外源基因会随着宿主细胞的分裂而不断丢失,在快速分裂的细胞中显得尤为显著。相反,将PiggyBac转座子载体和辅助质粒一起转染到哺乳动物细胞中,由于转座子在转座酶的作用下,目的基因能稳定地整合到宿主细胞的染色体中,从而实现转座子载体上携带的目的基因在宿主细胞中永久表达。

技术简单:通过常规转染即可把质粒转入细胞,相比起病毒载体需要进行病毒包装,过程更简单。

载体容量大:我们的转座子载体总容量可达30kb,其中质粒骨架只占3kb,有足够大的容量可以放置客户所感兴趣的序列。

不足之处

转染细胞类型受限:PiggyBac载体进入细胞依赖于转染。不同类型的细胞,其转染效率差异非常大。非分裂细胞通常比分裂细胞更难转染,原代细胞比永生化细胞更难转染,一些重要的细胞类型转染难度更大,如神经元和胰岛β细胞。另外,质粒转染主要局限于体外应用,很少应用于体内实验(但可以应用于转基因动物模型制备)。以上因素在一定程度上制约了PiggyBac系统的应用。

PAM序列依赖: CRISPR/Cas9靶向特定位点时对gRNA识别序列3'端的PAM序列有严格要求。不同类型的Cas9蛋白需要使用不同的PAM序列。

载体关键元件

5' ITR: 5' inverted terminal repeat. When a DNA sequence is flanked by two ITRs, the piggyBac transposase can recognize them, and insert the flanked region including the two ITRs into the host genome. 

Promoter: The promoter that drives the expression of the downstream Cas9 gene is placed here.

Kozak: Kozak consensus sequence. It is placed in front of the start codon of the ORF of interest because it is believed to facilitate translation initiation in eukaryotes.

ORF: The open reading frame of the Cas9 nuclease variant chosen by the user.

rBG pA: Rabbit β-globin polyadenylation signal. It facilitates transcriptional termination of the upstream ORF.

CMV promoter: Human cytomegalovirus immediate early promoter. It drives the ubiquitous expression of the downstream marker gene.

Marker: A drug selection gene (such as neomycin resistance), a visually detectable gene (such as EGFP), or a dual-reporter gene (such as EGFP/Neo). This allows cells transduced with the vector to be selected and/or visualized.

BGH pA: Bovine growth hormone polyadenylation signal. It facilitates transcriptional termination of the upstream ORF.

3' ITR: 3' inverted terminal repeat.

Ampicillin: Ampicillin resistance gene. It allows the plasmid to be maintained by ampicillin selection in E. coli.

pUC ori: pUC origin of replication. Plasmids carrying this origin exist in high copy numbers in E. coli.